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Abstract

Rationale: The transition to air breathing at birth is a seminal
respiratory event common to all humans, but the intrathoracic
processes remain poorly understood.

Objectives: The objectives of this prospective, observational study
were to describe the spatiotemporal gas flow, aeration, and
ventilation patterns within the lung in term neonates undergoing
successful respiratory transition.

Methods: Electrical impedance tomography was used to image
intrathoracic volume patterns for every breath until 6 minutes from
birth in neonates born by elective cesearean section and not
needing resuscitation. Breaths were classified by video data, and
measures of lung aeration, tidal flow conditions, and intrathoracic
volume distribution calculated for each inflation.

Measurements and Main Results: A total of 1,401 breaths from
17 neonates met all eligibility and data analysis criteria. Stable FRC

was obtained by median (interquartile range) 43 (21–77) breaths.
Breathing patterns changed from predominantly crying (80.9% first
min) to tidal breathing (65.3% sixth min). From birth, tidal
ventilation was not uniform within the lung, favoring the right and
nondependent regions; P, 0.001 versus left and dependent regions
(mixed-effects model). Initial crying created a unique volumetric
pattern with delayed midexpiratory gas flow associated with
intrathoracic volume redistribution (pendelluft flow) within the lung.
This preserved FRC, especially within the dorsal and right regions.

Conclusions: The commencement of air breathing at birth
generates unique flow and volume states associated with marked
spatiotemporal ventilation inhomogeneity not seen elsewhere in
respiratory physiology. At birth, neonates innately brake expiratory
flow to defend FRC gains and redistribute gas to less aerated
regions.
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The rapid adaptation to air-breathing at birth
(aeration)isoneofthemost important,but least
understood, physiological events in humans.
Much of our understanding is inferred from
preclinical studies (1–4) or invasive
observational studies (5–8). These studies
suggest that creating an FRC during the initial
process of lung aeration requires first clearing
the airways of fetal lung liquid using high
intrathoracic pressure gradients (1, 2, 5).
Subsequent tidal ventilationmust prevent an
influx of fluid back into the alveoli during
expiration (1). Animal studies have
demonstratedthattheseprocessesexhibitahigh
degree of spatiotemporal variability within the
lung (2, 9). Formost newborns, fluid clearance
andthetransitionfromtheplacentatothe lungs
astheorganofgasexchangeisachievedthrough
the spontaneous onset of breathing.When this
process fails,especially inpreterminfants,death
or significantmorbiditymay result. Because of
an inability to define the processes of aeration
and ventilation at birth, effective evidence-
based interventions to support breathing after
birth are lacking (10, 11).

The development of effective delivery
room interventions first requires an

understanding of the physiological processes
defining success or failure of aeration at birth.
Adapting physiological concepts from
preclinical studies have limited utility, as
instrumentation restricts theability toemulate
respiratory mechanics and the neurological
state of the breathing human infant (1–3, 12).
The delivery room further creates a
challenging research environment, the time-
critical and dynamic nature of birth itself
hampers physiological measurements (13).
Lung volume changes at birth have been
intermittently imagedusingchest radiography
(14) and ultrasound (15), and pressure and
flowpatternshavebeenmeasured invasivelyat
the mouth or pharynx (5, 16). These studies
identified unique breath types associated with
high intrathoracic pressure gradients during
successful respiratory transition in term
infants, specifically, cryingandgrunting (5, 17,
18). Importantly, thesestudies failedtodirectly
define the fundamental dynamic
spatiotemporal processes of aeration and
subsequent ventilation within the lung.

To address this gap in knowledge, we
used electrical impedance tomography (EIT),
an emerging radiation-free imaging modality
(19). EIT uses the differential electrical
properties of aerated and fluid-containing
tissue tomeasure the tidal and end-expiratory
volume changes in lung regions within a
transversechest slice (19).WeadaptedourEIT
techniques for measuring the respiratory
transition in preclinical studies (2–4, 12,
20–23). This allowed noninvasive and
nonhazardous direct imaging of the dynamic
breath-to-breath regional process of aeration
at birth in human infants without interfering
with normal physiology or clinical care. The
objective of this study was to describe the
spatiotemporal respiratorypatterns associated
with the successful transition to air-breathing
after birth in term infants. The specific aims
were to 1) characterize the inspiratory and
expiratory timeandflowcharacteristicswithin
the lung at birth and 2) describe the resultant
spatiotemporal ventilation and volume
patterns by breath type and time.

Some of the results of these studies have
been previously reported in the form of a
preprint (medRxiv, [30 July 2020] https://doi.
org/10.1101/2020.07.29.20161166).

Methods

A detailed methodology can be found in the
online supplement. This prospective
observational study was conducted at the

Royal Women’s Hospital in Melbourne,
Australia. Ethics approval was granted by the
Royal Women’s Hospital Human Research
andEthicsCommittee (#16–33), andthe study
was registered with the Australian New
Zealand Clinical Trials Registry
(ACTRN12618000128291).

Infantswereeligible forenrollment if they
were delivered by elective cesarean section via
spinal anesthesia for nonfetal reasons at 3610

or more weeks gestation, and written
prospectiveparental consentobtained. Infants
were not included if placement of an EIT belt
would interfere with clinical care (24–26) or if
the fetus had a known congenital condition
that would alter EIT interpretability. Infants
who received resuscitative interventions were
excluded from analysis.

Measurements
Heart rate and peripheral oxygen saturation
(SpO2

) were measured with a Radical 7 pulse
oximeter (Massimo Corporation). Regional
lung volume changes were imaged at 48
frames/swith thePioneerEIT systemusing an
ultrasoundgel–coatedNeoSensorBelt (Sentec
AG) (2, 12, 24–26). Audio and video were
recorded at 30 frames/s (webcam; Logitech).

Delivery Room Protocol
As the infant was being placed supine on the
resuscitaire, the NeoSensor Belt was secured
(velcro tab)aroundthechestatnipple level (see
VideoE1 in theonline supplement).Thepulse
oximetry sensorwas applied to the right hand.
There was no other interference with routine
clinical care. Infantsweremanaged in a supine
position in accordance with local guidelines,
including timing of umbilical cord clamping.
Data were only recorded during care on the
resuscitaire.

Data Acquisition and Analysis
EIT, video, audio, and pulse oximetry data
were continuously recorded digitally during
resuscitaire management, and timing of
critical events from birth were documented.
SpO2

andheart rate datawere reviewed for loss
of signal or movement artifact. EIT data were
recorded in a custom-built infant imaging
package (27), and images were reconstructed
post hoc (19, 28) using the vendor-provided
humanmodel chest atlas, with nonlung
regions excluded (2, 23, 24, 26). Each potential
VT change due to breathing was identified
fromtheglobal lung signal.Analysisof theEIT
change associated with a breath was only
performed if there was 1) video confirmation

At a Glance Commentary

Scientific Knowledge on the
Subject: Birth requires the rapid
transition from a fluid-filled to
aerated lung, a process that is poorly
understood. Limited human and
animal studies suggest high
intrathoracic pressure and flow states
are required to attain FRC and
support tidal ventilation.

What This Study Adds to the Field:
This is the first breath-by-breath
imaging of the lungs of term neonates
undergoing successful respiratory
transition at birth. We identified
highly inhomogeneous
spatiotemporal aeration and
ventilation patterns. Crying at birth
preserved FRC by allowing
intrathoracic volume redistribution
(pendelluft flow) within the lung.
Newborns defend aeration from
intrathoracic lung fluid shifts at birth
by innately braking expiratory flow
using the glottis and diaphragm.
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Figure 1. (A) Relative volume change (DVL) over time within the whole lung during the two representative breaths for crying (i; 25 s) and tidal breaths
(ii; 5 min). (B) DVL during the same breaths within the ventral (blue) and dorsal (red) hemithoraces. (C) Ventrodorsal center of ventilation (CoVVD) by
minute after birth for crying and tidal breaths. CoVVD of 55% represents uniform ventilation, with values ,55% indicating relatively greater ventilation
in the ventral lung and .55% indicating greater ventilation in the dorsal lung. Gray dots represent individual breath data, and black lines and bars
represent mean6SD. (D) Relative distribution of ventilation (percentage total VT) along the gravity-dependent plane for crying and tidal breaths in
the most gravity-dependent third of the lung (black bars), central third (gray bars), and non–gravity-dependent third (white bars), with solid bars
being the right lung region and dotted or checkered bars being the left lung. All data are mean1SD. *P, 0.05, **P, 0.01, and ***P,0.0001
against first 60 seconds (mixed-effects model).
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of a breath and 2) no movement interference
on the video. All included breaths were
classified by the presence of an audible cry,
grunt, or no breathing noise (tidal breath). If
audio classification was not possible, the
breath was excluded (Figure E1).

For included breaths, the prebreath and
postbreath FRC, inspiratory time (Ti),
expiratory time (Te), time constant of the
respiratory cycle (s), and relative peak
inspiratory flow (PIF) and expiratory flow
(PEF)were calculated for the global signal and
right, left, ventral, anddorsal lungregions (19).
The shape of the impedance change during
each breath was classified by an investigator
(D.G.T.) unaware of the breath type or time
frombirth.Thecentersofventilationalong the
ventrodorsal (CoVVD) and right–left (CoVRL)
planes were calculated to determine
spatiotemporal distribution of VT within the
chestslice(19,29).Thepercentageoftheglobal
VT signal was calculated for the most
dependent, central, and nondependent thirds
of the right and left lung regions, and the
percentage and location of lung regions
without anyVT signalwere calculated (19, 24).

Sample Size and Statistical Analysis
Based on a previous study of respiratory
parameters atbirth (16), a conveniencesample
of 30 infants was estimated to provide data for
breath-by-breath classification and analysis of
100–150 breaths/infant per 5–6-minute
period in15–20 infants.Continuousdatawere
analyzedwithamixed-effects linearregression
model, with robust SE and cluster analysis to
adjust formultiple breaths fromeach infant.A
P value of less than 0.05 was considered
statistically significant.

Results

A visual abstract of the main study findings is
available in Video E2.

Study Population
Thirty-three families were approached on the
day of the delivery, with three declining to
participate. Two studied infants received
resuscitative support after birth and were
excluded. Of the remaining 28 infants, EIT
data were obtained in 27 infants (EIT belt
incorrectly placed). Complete audio or video
datawere not acquired in 10 infants (technical
failure in delivery room, camera obstructed,
excessive background noise, or inability to
delineate any audio/video breaths). The
characteristics of the final 17 infants with
matched EIT, video, and audio data are
described in Table E1. All were singleton
pregnancies,andnomotherreceivedantenatal
corticosteroids.

Pulse Oximetry
Apulseoximetrysignalcouldbeacquiredin15
infants, with a median (range) of 17 (3–198)
secondsbetweenapplyingtheprobeandsignal
acquisition. The first SpO2

signal was acquired
at 52 (12–97) seconds but was then lost for
more than 10 seconds at least once in 10
infants. SpO2

increased with time from 53%
(48–72%) at 60 seconds to 78% (60–96%) by
360 seconds (P=0.029; mixed-effects model,
Figure E2). Heart rate was stable throughout
the study period (P=0.25).

Time to Image Acquisition
The median (range) time from birth to first
EIT image was 36 (20–62) seconds, with the
longest periods being in the two infants born
with delayed cord clamping (60 and 62 s). The
time between cutting of umbilical cord and
first EIT image was 31 (20–48) seconds. In all
infants, the timebetweenapplying theEITbelt
andfirst imageswas less than 12 seconds, with
no subsequent signal loss.

Breathing Patterns
A total of 1,401 inflations met the inclusion
criteria (Table 1). Only 14 breaths (1%) had

audible grunting (all during periods of crying)
and were included within the 787 crying
breaths. Overall, crying was more prominent
early in therespiratory transition, representing
80.9% of all included inflationswithin the first
minute, then decreasing to 34.7% by the sixth
minute (P, 0.0001; v2 test for trend).

Breaths could be classified as following
two distinct EIT volume patterns, as follow: 1)
linear inspiratory and expiratory volume
change consistent with tidal ventilation of
alreadyaerated lungsor2) an expiratoryphase
with a distinct bifid expiratory wave and a
transient increase or preservation in lung
volume (Figure 1 andVideoE2).During these
bifidwaves, therewasa subtle redistributionof
ventilation seen on functional EIT images
consistent with pendelluft flow.Most (70.8%)
crying breaths had a bifid wave, compared
with only 2.5% of tidal breaths.

Ti increased over the first minutes of life
for both breath types; P, 0.0001 (Figure 2A).
Crying generated shorter Ti than tidal breaths
in the first 60 seconds, with a mean (95%
confidence interval [CI]) difference of 101
(56–147) milliseconds. In contrast, Te and s
were longer during crying than tidal breaths
(both P, 0.0001; Figures 2B and 2C),
especially between 61 and 180 seconds (Te)
andafter 120seconds (s).Overall,Teandsdid
notchangesignificantlywith timeforcryingor
tidal breaths.

PIF was greater at all time epochs during
crying compared with tidal breaths (all
P, 0.0001). Overall, PIF increased with time
for tidal breaths (P, 0.0001; Figure 2D) but
not during crying. PEF was greater during
crying than tidal breaths for the first 180
seconds (all P, 0.0001; Figure 2E), with the
greatest difference in the first 60 seconds (1.4
[0.9–1.8]AU/s). PEFdecreasedwithwith time
during crying (P, 0.0001), whereas tidal
breaths were unchanged.

The detailed spatiotemporal behavior of
Ti,Te, s, PIF, andPEF in the right, left, ventral,

Table 1. Type of Breath by Time

Included Inflations (n=1,401)

Time from birth

0–60 s 61–120 s 121–180 s 181–240 s 241–360 s Total

Cry, n 55 186 221 188 137 787
Tidal, n 13 48 106 189 258 614
Cry, %* 80.9 79.5 67.6 49.9 34.7 56.2
Cry/infant median (minimum–maximum) 6 (2–21) 13 (3–22) 13 (3–52) 12 (1–63) 15 (1–48) 11 (1–63)
Tidal/infant, median (minimum–maximum) 7 (4–9) 4 (1–13) 9 (1–20) 11 (2–44) 15 (4–102) 9 (1–102)

*P, 0.0001; v2 test for trend.
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Figure 2. (A) Ti, (B) Te, (C) s, (D) PIF, and (E) PEF. Solid circles indicate crying breaths, and open diamonds indicate tidal breaths. All data are
mean6SD. *P, 0.05, **P,0.01, and ***P,0.0001 cry versus tidal inflation; †P,0.01 within breath type (all mixed-effects model). PEF=peak
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and dorsal regions are provided in the online
supplement (Figures E3–E7). Overall, Ti, Te,
and s were similar within all regions for both
breath types. Crying resulted in faster PIF and
PEF in the dorsal and right regions compared
with the ventral and left regions, respectively.
Tidal breaths resulted in less right–left and
ventral–dorsal heterogeneity in PIF and PEF
than crying.

Functional Residual Capacity
Overall, FRC increased and was quickly
established after birth, with the maximum
recorded FRC value for each infant occurring
at amedian (interquartile range) of 43 (21–77)
of included breaths after birth and in 67.8%
(51.9–94.5%) of the analyzed sequential
breaths (Figures 3 andE8).During an infant’s
first 100 breaths (or total if less than 100), 48%
of FRC change occurred by the fifth breath.

Regional Ventilation Patterns
Ventilation redistributed toward the dorsal
regions with time for both crying and tidal
breaths (Figure 1) (CoVVD, P=0.045 and
P, 0.0001, respectively). Overall, CoVVD

favored the ventral regions during crying
compared with tidal breaths by a mean (95%
CI) of 1.6% (0.3–2.9%), although the
differences were not significant within each
minute. The redistribution of VT toward the
dorsal regions was predominantly due to
increased VT within central regions during
crying and within the dorsal region during
tidal breaths (P=0.0004), both at the expense
of ventral VT.

Both breath types resulted in greater
ventilation in the right lung (Figure 4).During
crying a mean (SD) of 82.2% (15.3%) of total
VT occurring in the right lung during the first
60 seconds (CoVRL, 3.0% [9.1%]; ideal, 46%),

increasing within the left lung with time
(P=0.011). By 240 seconds, 64.3% (11.4%) of
VT occurred within the right lung (CoVRL,
43.1% [6.5%]). The right lung accounted for
the predominance of 59.5% (14.3%) of VT

(CoVRL, 46.4% [9.3%]) during tidal breaths
within the first 60 seconds, and this
predominance did not change over time
(P=0.10). Crying resulted in greater right–left
lung inhomogeneity, with CoVRL being a
mean (95%CI) of 2.0% (0.5–3.5%) less overall
than tidal breaths, and the difference was
greatest in the first minute (13.4%
[6.7–20.1%]).

Approximately 10% of predefined lung
regions were unventilated for both tidal and
crying breaths, with no difference in the
ventrodorsal pattern of unventilated regions
(Figure E9). After 240 seconds, there were
fewer unventilated lung regions, especially
during tidal breathing, suggesting that
increasing aeration resulted in greater
engagement of the distal lung in ventilation.

Discussion

The transition to air-breathing at birth is a
seminal physiological event essential to life in
all humans. In our observational study, we
provide the first detailed description of the
volumetric processes within the lung at birth.
Wefoundthat thetransitiontoair-breathingis
characterized by complex spatiotemporal
patterns of aeration and ventilation initially
mediated by high PIF rates and prolonged
expiration. Overall, this results in rapid lung
aeration that moves from the central to distal
lung, with the right lung engaging in
ventilation earlier than the left. Crying, the
dominant breathing pattern at birth, creates

greater PIF and complex expiratory volume
patterns, including pendulluft flows, more
suited toboth rapid aeration andmaintenance
of FRC than tidal breathing, at a time the lung
is still likely to be partially fluid filled. That
thesefindingsoccurred inhealthy terminfants
without instrumentation or active
intervention is important, providing the first
human evidence that successful aeration at
birth is dependent on actively engaging in
expiratory mechanisms to protect FRC
(Figure 5).

Clearing the respiratory system of fetal
lung liquid and establishing aeration is
essential to physiological success at birth. We
showed that the majority of lung aeration is
rapidly achieved at birth, similar to chest
radiography studies during the first seconds
after birth in term infants (7, 8). Unlike these
studies, we were able to continuously follow
the process of aeration beyond the first
inflations. Although there was considerable
intersubject variability, aeration conformed
with an exponential pattern reported in
preclinical studies (3, 4, 23, 30, 31) and during
lung recruitment in the already aerated lung
(32, 33). Aeration was also associated with a
temporal increase in distal lung ventilation.
Our study is thefirst inhumans to confirm the
sequential central–distal movement of the
air–fluid interface during aeration from the
major airways to the distal alveoli reported in
animal studies ongoing beyond the first few
breaths (1, 9). EIT cannot directly measure
airspace fluid, but the markedly different
electrical properties of air and fluid make EIT
ideally suited to mapping the air–fluid
interface and tracking lung aeration clinically.

The patterns of ventilation indicate that
spatiotemporal aeration after birth is more
complex than only a central–distal process.
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(6.0–10.5) inflations (R2 0.14; root mean square error 24.5%; replicates test discrepancy, 0.82 [P=0.96]). Gray dashed lines demonstrate DFRC
at 50% of FRCmax and 50 inflations. (B) Solid circles represent the mean DFRC every five inflations for each infant, and dashed lines represent the
95% CI.
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Figure 4. (A) DVL over time within the right (blue) and left (red) lung during the two representative breaths for crying (i; 25 s) and tidal breaths (ii; 5
min). (B) Functional electrical impedance tomography images of volume change within the lungs for the same breaths using the color scale defined
in Video E2. (C) Relative distribution of ventilation (% total VT) in the right (solid bars) and left (open bars) lung for crying and tidal breaths. (D) Center
of ventilation along the right–left plane (CoVRL) for all inflations by minute after birth for crying and tidal breaths. CoVRL of 46% represents uniform
ventilation, with values ,46% indicating relatively greater ventilation in the right lung and values .46% indicating greater ventilation in the left lung.
All data are mean6SD, and dots represent individual breath data. (A and C) *P,0.05 and ***P, 0.0001 (mixed-effects model). (B and D) *P,0.05
and **P,0.01 against first 60 seconds. †P,0.05 against 181–240 seconds. DVL= relative volume change.
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The preferential ventilation of the right lung
was unexpected but biologically plausible. At
birth, the lung is fluid filled, and airways (and
tissue) have a high resistance (34). The left
main bronchus exits the carina acutely and is
encumbered by the heart. This may create
preferential flow states toward the right lung,
especially during the higher inspiratory flows
of crying. Resistance falls in those areas of the
lung that aerate first, further potentiating
ventilation compared with unaerated regions.
Our data also suggest that ventilation initially

follows a gravity-dependent pattern similar to
that seen in parenchymal lung diseases (35,
36). Once aerated, the lung rapidly develops
the anatomical ventrodorsal pattern of
ventilation reported in healthy older infants,
favoring thedorsal lungwith its increased lung
mass and greater diaphragmatic tidal
movement (19, 37). These changing
spatiotemporal patterns across multiple
planes make applying respiratory support
without risking lung injury particularly
challenging.

As expected inhealthy infants, during the
first 2 minutes, 80% of breaths were cries. In a
similar population of 13 infants, 77% of the
analyzed 749 breaths within the first 90
seconds after birth were classified as cries or
grunts, but breath classification was
performed post hoc from face mask
measurements without auditory or visual
confirmation, limiting interpretability (16).
Ourstudyis thefirst toclassifyvolumechanges
with flow and breathing behavior. Crying
createddifferentflowcharacteristics than tidal
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Figure 5. Summary of main findings and hypothesized explanation of the criteria which define the respiratory events within the lungs at birth.
Representative global lung volume change during a single cry at 14 seconds after birth (Infant 6; [A]) demonstrating the dynamic volume change
during inspiration and expiration, and resultant increase in end-expiratory FRC. The breath has been divided into five phases related to the
mechanistic events identified during (B) the respiratory transition from a fluid-filled to aerated lung, and (C) the respective functional electrical
impedance tomography images for each. At the start of the inflation, the airways and alveoli are fluid filled (column 1). A cry initiates a rapid and large
contraction of the diaphragm with a resultant rapid inspiratory flow (slope of the time–volume curve) and high inflating (driving) pressure within the
lung generating aeration by moving fluid from the proximal airways to the alveoli (enlarged) and then the lung interstitium (column 2). Expiration
begins with rapid contraction of the diaphragm (column 3). The fall in intrathoracic pressure during expiration lowers intraalveolar pressure, and, in
some lung units, this fall allows fetal fluid to influx back into the alveoli spaces. To counteract this effect, the neonate slows (brakes) diaphragmatic
contraction and partially closes the glottis, thus transiently repressurizing the lung and allowing pendulluft gas flow between aerated and poorly
aerated lung units (column 4). When expiration continues, it does so against a partially closed glottis, which mediates slower expiratory gas flow and
allows some gas to remain in the lungs, thus generating a greater end-expiration FRC (column 5) and more favorable lung conditions at the start of
the next inflation.
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breathing,quickly inflatingthe lungwith faster
Ti and PIF. This is advantageous within the
highly resistive fluid-filled lung at birth (34),
but once the lung is aerated, it provides little
mechanical or gas exchange benefit. We
postulate that crying has a de novo
physiological purpose and is not simply due to
the noxious stress response of birth. Once
aerated, the high PIF conditions of crying
increase unventilated lung tissue, with infants
switching to the more advantageous tidal
breaths.

Importantly, crying is also an expiratory
phenomenon, being associated with slow
expiratory flows and longer Te and s. Volume
loss during expiration followed a unique bifid
pattern, occurring in71%ofall cries andrarely
in tidal inflations. This pattern of volume
change represents transient periods of
minimal airway flow despite the chest wall
beinginastateofexpiratoryrecoil. Inthisstate,
reducing expiratory flow could only be
achieved via active means, such as glottic
closure or diaphragmatic hold,which are both
seen in radiological imaging at birth (8). The
lung is in a state offlux in early exutero life; the
alveoli maybe air filled but fetal lung fluid
remains in the interstitium, and fluid can
influx back into alveoli if the intrathoracic
pressure gradient falls, compromising FRC (4,
9, 34). It has been proposed that “expiratory
braking” is essential during this period (1, 5, 7,
8,17,18,38),andflowpatternsmeasuredat the
airwayopening support this but havenot been
correlated with temporal FRC change (16).
Our study provides the first evidence that
expiratory braking does more than just
prevent the egress of gas from the lungs. It also
facilitates the volumetric conditions needed to
preserve FRC and, importantly, redistributes
gas within the lungs (pendelluft flow).We
propose that this provides a simple visual
indicator of an infant’s ability to
independently support respiratory transition.
Further studies are warranted to determine
whether thesamebreathtypesandpatternsare
present in at-risk and preterm infants.

Reports of the cardiorespiratory
processes at birth are sparse,mainlybecauseof
challenges in measurement. After chest
radiology studies in the 1960s (7, 8),
instrumentation within the mouth, initially
with bulky equipment (5, 17, 18, 38) andmore
recently with face masks (16, 39, 40), have
measured airway opening flow, VT, expired

CO2, and/or pressure changes and infer
intrathoracic conditions. Face masks are
frequently applied with a leak (41, 42);
application interferes with normal breathing
efforts (43) and cannot identify important
spatiotemporal events, limiting usefulness
during spontaneous breathing. Ideally,
measurements should be obtained from the
thorax without impacting respiratory effort.
Recently, respiratory-inductive
plethysmography (39) and lung ultrasound
(15) have been used in the delivery room.
Inductive plethysmography requires two belts
and determines lung volume frommeasuring
the cross-sectional areas of the chest and
abdomen, which may not change between
fluid- and air-filled states (32). Lung
ultrasound is ideal for imaging the air–fluid
interface and is simple tousebut lacks regional
resolution, and continuous imaging has not
been possible (15). In this context, EIT is
attractive. EIT is an established and validated
method of measuring relative change in
multiple spatiotemporal respiratory
parameters (19). EIT is radiation free and
available with a simple noninvasive belt (25)
that could be applied as quickly, and more
reliably, than pulse oximetry. EIT also
confirmed the physiological patterns seen in
humans and preclinical studies using these
other measurement tools (2, 9, 23). We
contend that EIT is currently the best method
of monitoring the respiratory system at birth.

Limitations
Our study was limited to birth via elective
cesarean section, andmeasurements were not
made from delivery of the chest. The birth
experience is uniquely personal, and we
intentionally limited our study to a period of
clinical mother–baby separation.
Consequently, we missed the first few
inflations in most infants. We contend that
these inflations are unlikely to be markedly
different from those we captured. The unique
volumetric, flow, and FRC characteristics we
identified indicate fluid clearance was still
ongoing during the first 120 seconds. It is
unlikely that the enhanced lung liquid
clearance provided by delivery through the
vaginal canal would alter the respiratory
findings in our healthy term population with
active vigorous breathing. Respiratory effort
was not suppressed, but data on all modes of
delivery are needed in less vigorous infants.

We have demonstrated that EIT can be
practically applied earlier and during vaginal
delivery.Our study of 1,401 inflations from17
infants is one of the largest, but, like previous
studies (16, 17), exclusionswerenecessary and
may have included potentially important
breaths. In part, this was intentional; our
methodology was designed to minimize
artifact andensurecorrectbreathclassification
lacking in previous studies (16). It is possible
that respiratory drive occurred with an
occluded airway. This would not result in a
volume change on EIT but is an important
physiological finding that should be seen on
video. Like all other imaging tools used to
describe the respiratory transition, EIT is
limited to a single slice of the lung. However,
single-slice EIT has been shown to represent
whole lungpatterns in infants (19).EITcannot
measure intrathoracic pressure. To do so
would require invasive instrumentation, but
this is unnecessary as flow patterns reflect
intrathoracic pressure states.

Conclusions
This study provides the first detailed
description of the respiratory behavior of the
healthy human lung during the transition to
air-breathing after birth. Birth requires rapid
aeration of the lung, and this is achieved
predominately via crying. Crying creates
unique flow and volume states not seen
elsewhere in respiratory physiology and is
characterized by high PIF and expiratory
braking to preserve attained FRC and allow
volume redistribution. The right lung
ventilates before the left lung after birth, and
the lung quickly develops an anatomical
pattern of ventrodorsal ventilation once
aerated. Understanding how the human lung
successfully commences breathing at birth is
the first step in developing tools to identify
when intervention is required.�
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